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This investigation has been prompted by the application
of least-squares methods to diffraction data from crystal-
line fibres (e.g. Arnott & Coulter, 1963). For single-
crystal data, the inclusion in least-squares analyses of
contributions from reflexions with below-threshold inten-
sities has been considered previously (Hamilton, 1955).
Cruickshank (1961) has pointed out how markedly the
accuracy of crystal-structure determinations is improved
by such inclusions in the case where the number of
accidental absences is relatively large. This is very often
the case with data from crystalline fibres which show
many accidental absences and where the number of
reflexions recorded is a small fraction of the total possible.
This is partly a consequence of the imperfect parallelism
of the crystallites within the fibre which results in the
diffracted intensity being dissipated over arcs, whose
length increases with distance from the centre of the
pattern, thereby giving higher threshold values for the
observations.

The rotation-diagram characteristics of fibre diffraction
patterns provide a further complication for reflexions,
whatever their intensity, which have the same §-value
and therefore are not resolvable. This problem of overlap
has its most extreme form in powder diagrams for
reflexions with similar g-values.

Let us define F; to be the structure amplitude and
I; the corrected intensity for a reflexion with structure
factor F;, and the probability that F; lies between
F; and F;+dF; to be P(F;)dF;. In a least-squares
analysis which minimizes

R = Zwi(F?bs _qualc)z,

F; should be assigned its expected or mean value u,(Fy),
under the conditions provided by the observations,
and a weight w; =1/u, where u, is the variance. When
a reflexion has an intensity below the observable thresh-
old, I, then

0< F1<Ft=VIL .
It follows that
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In the case where the intensity is below threshold, but

N
composite, with N components then 0 < ¥ Fi<I; and
1
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and
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Mz(Fr)={SS ces SFHITPt(Fi)dFi/SS. . .SIIIPt(Ft)dFt}

-ui(Fr). (4

The limits of the N successive definite integrals are
respectively 0 and F;, 0 and )/(I; — F%), 0 and

N=1
VI, ~F2—F3),...,0 and J(I,—IF},
1

expressing the fact that once some F’s are chosen the
values the remainder may take are constrained.

If (F) is the local average of all the intensities, we
may assume that if G¢=F;/(F) is small, which will
usually be the case for below threshold intensities, the
F’s will be randomly distributed in the range 0 to F\.
The probability density P(F) is then a constant for
F real, and proportional to F, a radius in the complex
plane, for F complex. Table 1 shows u,(F) and u,(F)
calculated on this basis for the nine cases with N < 3.

The case where a number of reflexions overlap and
give an above threshold, and therefore measurable,
intensity I;=F% may be treated similarly. Here N
components satisfy the condition

N
SF=1,=TF:,
1

which is a more restricted case of the previous situation
implying
0< Z'Fi<ls

when any term F2 is omitted from the summation.
Therefore

Table 1. Expected value (1,) and variance (u,) of below-threshold structure amplitudes

No. of Structure factor type Real Complex
overlapping
reflexions Real Complex py(F)[Fy Ho(F)[F¢? p ()| Fy Ho(F)[Fy?
1 1 0 0-500 0-083 X X
0 1 X X 0-667 0-056
2 2 0 0-424 0-070 X X
1 1 0-375 0-059 0-589 0-053
0 2 X X 0-533 0-049
3 3 0 0-375 0-059 X X
2 1 0-340 0-051 0-533 0-049
1 2 0-313 0-045 0-491 0-045
0 3 X X 0-457 0-041
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Table 2. Means and variances for two overlapping, above-threshold, intensities
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2 ‘real’ reflexions

2 ‘complex’ reflexions

Gs (6) 10, py(G) #(G) 102 p,(G)

0-2 0-16 (0-16) 0-20 (0-20) 0-13 (0-13) 0-19 (0-22)
0-4 0-32 (0-31) 0-76 (0-80) 0-27 (0-27) 0-89 (0-89)
0-6 0-48 (0-47) 1-65 (1-79) 0-42 (0-40) 1-70 (2:00)
0-8 0-65 (0-63) 2-14 (3-19) 0-57 (0-53) 3-10 (3-56)
1-0 0-82 (0-79) 3:95 (4-98) 0-73 (0-67) 5-00 (5-56)

w(Fy) = SS . SF,H’Pi(Fi)dFi/SS s S II'Py(F;)dF;
etc., (5)

the prime indicating that no term P.(F,)dF, occurs in
the product. The number of integrations will be (N —1),
betokening one degree of freedom less than in the below-
threshold case. The limits of the pth definite integral
being 0 and

(p—

V(Is—é)Fi)-

As is usual in X-ray intensity statistics it is convenient
to consider G=F/(F) rather than F as the variable.
Each P;(G;) must be chosen accurately to represent the
amplitude distribution and also to be mathematically
tractable. When Wilson statistics apply, the probability
densities for centric and acentric structure amplitude
distributions are respectively proportional to exp(—1G?)
and G exp (—~G?). In the most common case when two
reflexions overlap to give a total intensity I;=G%.(I),
it can be shown that if both reflexions are of the centric
class

ﬂl(Gi) =
V(2n)Giexp (—G3/4) {1,(G3/4) + 1,(G2/ 4)}/4erf (G5/)/2) (6)

and

l‘z(GT) =
(63— 1)+ {265 exp (— G2/2)1y/(2x) exf (G4/)/2)} —3(G;) (1)

(I is the nth order modified Bessel function of the first
kind); when both are from the acentric class
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Gs
1y(Gy) = Gy — {exp (—Gﬁ)SO exp (p?)dp/(1 —exp (—G2)}
and (8)
1a(Gy) = (G2(1 —exp (— G} =1 4Gy . (9)

In the third possible case where one belongs to each
class, u,(G:)=p,(G,) above, and u,(G,)=p,(G;) above,
and similarly for the u,’s.

Table 2 shows the values for a number of G. They
are to be compared with the bracketed values obtained
using the approximate probability densities, the use of
which was suggested for the accidentally absent spectra.
They can be seen to be reasonable approximations even
when G5 ~ 1.

The inverses of the variances provide absolute weights
for the observations. Generally some analytical function
is used to provide relative weights for the single reflexion
data and therefore a correlation for the two schemes
has to be established. The treatment assumes that
measurements of all I, and I; are subject to the same
errors, it may sometimes be desirable also to subject
these observations to a further weighting factor to take
account of the variation of errors in I; and Is.

The author is obliged to Prof. Sir John Randall,
F.R.S. for the provision of facilities and to Prof. M.H.F.
Wilkins, F.R.S. for encouragement.
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A scattering curve for the ammonium ion. By M. W. Wess, University of Bristol, England

(Recetved 18 June 1964)

During two-dimensional least-squares calculations on
nickel ammonium sulphate hexahydrate (Grimes, Kay
& Webb, 1963) it was noticed that the recommended
atomic shifts for the ammonium ion were unexpectedly
much larger and more random than those for the oxygen
atoms and there was no appreciable change in the R index
from 0-13 in successive cycles. The ammonium ions and
oxygen atoms were equally well defined on the electron

density projection, so it was suspected that the strange
behaviour of the ammonium ion was due to the use of
the scattering curve of nitrogen as an approximation
to that of the ammonium ion. It was therefore decided
to calculate a scattering curve for the ammonium ion
from the electron-density distribution given by Banyard
& March (1961) for an assumed spherically symmetrical
ammonium ion.



